реферат скачать
 

Производство гидротехнических работ

Производство гидротехнических работ

1. Степени и способы равнения подводных оснований гидротехнических сооружений.

Степень ровнения — грубое (Г), тщательное (Т), весьма тщательное (ВТ) —применяют в зависимости от класса и конструкции сооружения; для берм постелей набережных, оградительных сооружений, призм под фильтры — грубое ровнение с допускаемым отклонением ровняемой поверхности в пределах 200 мм в одну и другую стороны, берм и откосов постелей для покрытия защитными массивами — тщательное ровнение с отклонениями по 80 мм, постелей под массивовую кладку, массивы-гиганты, конструкции уголкового типа и оболочки большого диаметра — весьма тщательное ровнение с допусками по 30 мм.

Небольшие объемы ровнения выполняют обычно водолазы вручную: грубое — один водолаз с замером отметок футштоком, тщательное и весьма тщательное — два водолаза с помощью направляющих шаблонов и двигающейся по ним ровняющей рейки.

Для подачи щебня на выравниваемый верхний слой каменной отсыпки используют специальное устройство, состоящее из смонтированного на барже бункера для щебня и отводного шланга. Конец шланга к месту насыпки щебня направляет водолаз, который отдает команды на поверхность о подаче щебня или о ее прекращении.

При значительных объемах планировочных работ применяют механизированный способ ровнения с помощью специальных планировщиков. Такой способ позволяет более чем в 3 раза повысить производительность труда и сократить сроки выполнения работ.

Уплотняют постели обычно путем их долгого выдерживания без нагрузки, способом статической огрузки и виброуплотнением.

2. Способы подводного бетонирования.

При подборе состава такого бетона его прочность по сравнению с обычными условиями назначают на 15—20 % выше проектной.

Укладывание бетонной смеси непосредственно в воду не дает желаемого результата вследствие расслаивания бетонной массы и вымывания из нее вяжущего. Поэтому смесь нужно подавать непрерывно на весь объем бетонирования в заранее установленную водолазами опалубку, исключающую или значительно снижающую контакт бетонной массы с окружающей средой (водой).

Подводное бетонирование конструкций выполняют следующими основными способами: с помощью бадей и самораскрывающихся ящиков (кюбелей), укладкой в мешках, отвалом бетонной смеси от берега с ее втрамбовыванием, с помощью вертикально перемещаемой трубы (ВПТ), восходящим раствором (ВР), инъецированием.

Бетонирование с помощью 6адей и кюбелей (рис. 182) применяют практически на любой глубине; при возведении конструкций, работающих на вертикальную нагрузку и имеющих прочный, надежны» внешний контур (днищ опускных колодцев, мостовых опор, колонн оболочек, блоков основания сооружения, вырубленных в трещинова той скальной породе и т. д.

Достоинства этого способа — относительно низкая себестоимость работ, возможность применения тех же технических средств для транспортирования и укладывания смеси, что и на поверхности Недостатки: частичное вымывание вяжущего в момент раскрытия затворов и рыхловатость поверхностного слоя, необходимость постоянного водолазного контроля при отсутствии видимости.

Укладывание бетонной смеси в мешках применяют при ремонтных работах, выравнивании скального основания сооружения, устройстве подводного ограждения (типа опалубки) для последующего бетонирования, в аварийных случаях. Глубина укладывания практически не ограничена.

Мешки шьют из прочной ткани или водонепроницаемого материала (полиэтилена, нейлона) вместимостью 20—30 и 2—7 л. Их заполняют бетонной смесью с осадкой конуса 5—7 см и подают под воду. Водолазы укладывают мешки вручную с перевязкой горизонтальных и вертикальных швов. В целях предотвращения сдвигов смежные ряды мешков прошивают металлическими стержнями диаметром 10—12 мм.

Отвал бетонной смеси с втрамбовыванием применяют при бетонировании неармированных конструкций или отдельных их элементов (подводного основания на каменистом прибрежном участке, ростверков, а также при ремонтных работах на мелководье) на защищенных от течения и волнения акваториях глубиной до 1,5 м. Бетонирование начинают либо непосредственно с берега, либо с искусственно созданного бетонного островка.

Бетонирование способом ВПТ (рис. 184, а) применяют при укладывании бетонных смесей на глубине 1—50 м и толщине слоя не менее 1 м для любых конструкций.

В целях получения более плотных бетонов на трубе устанавливают вибратор, позволяющий уменьшить водоцементное отношение и получить качественный бетон с меньшим расходом цемента.

Бетонирование способом ВР (рис. 184,б) выполняют в два этапа: укладывание в опалубку крупного заполнителя (камня или щебня); нагнетание в уложенный заполнитель по трубам под давлением растворной части. При использовании крупного каменного заполнителя работы могут вестись на глубине до 20 м, а щебня — до 50 м. Для получения более плотной структуры уложенного бетона на подающие раствор трубы могут быть установлены вибраторы.

Способы ВР и ВПТ имеют некоторое сходство, но первый значительно проще и позволяет полностью механизировать весь процесс.

К инъекционным способам бетонирования, созданным на основе способа ВР, относятся «Колькрет», ВНИИГ (наиболее распространены последние два).

Способ «Колькрет» заключается в заполнении пустот в ранее уложенном под воду щебеночном заполнителе приготовленной в специальных смесителях растворной смесью «Кольгру».

«Кольгру» укладывают тремя способами: нагнетанием на поверхность уложенного крупного заполнителя в блоке и омоноличиванием его при стекании раствора с постепенным вытеснением воды из блока; заполнением раствором блока бетонирования с последующим втапливанием в нее крупного заполнителя; нагнетанием способом ВР через инъекционные трубы, установленные в блоке с крупным заполнителем.

Способ ВНИИГ заключается в инъецировании растворонасосом через вертикальные или горизонтальные перфорированные трубы раствора в блок бетонирования с крупным заполнителем. После окончания инъецирования на трубы устанавливают вибраторы, уплотняющие уложенную смесь.

Инъекционные способы широко применяют при ремонте подводных частей сооружений и заделке стыков между секциями, блоками, массивами строящихся сооружений.

3. Способы подводной сварки и резки металла.

В связи с особенностями окружающей среды, плохой видимостью, ограниченностью движений, слабой устойчивостью водолаза технология подводных сварки и резки значительно отличается от надводной.

Подводная сварка. Сварку под водой выполняют только электродуговым способом (ручным или полуавтоматическим) с использованием плавящихся электродов.

Основной принцип подводной электросварки — способность дугового разряда устойчиво гореть в парогазовом пузыре, предохраняющем разряд от контакта с окружающей средой — водой (рис. 185). Парогазовый пузырь образуется в результате испарения и разложения воды, продуктов сгорания свариваемого металла и электрода.

Сварка возможна как в пресной, так и в морской воде. Основным недостатком подводной сварки является то, что металл в районе сварочного шва резко охлаждается под действием окружающей воды и закаляется, снижая пластичность и ударную вязкость стали, увеличивая ее пористость и хрупкость.

Широко используют так называемый «сухой», наиболее качественный способ подводной сварки. Он заключается в проведении сварочных работ в искусственной (в среде инертных газов) или естественной атмосфере, создаваемой внутри специальных кессонов или камер, из которых после их установки на месте работ и проведения соответствующих мероприятий по уплотнению прилегающих контуров откачивают или выдавливают воду. В этом случае сварку производят обычным электродом.

Подводная резка. Кроме механического и взрывного (с помощью кумулятивных зарядов) способов, резка может осуществляться тепловыми способами (бензо- и электрокислородным, электродуговым, плазменно-дуговым).

Бензокислородная резка чугуна и стали под водой мало отличается от надводной, за исключением увеличенного расхода газа и бензина (за счет охлаждающего воздействия среды) при повышенном давлении. Процесс подводной резки происходит в результате нагрева металла при сгорании распыленного бензина в газовом защитном пузыре и подаче к месту реза струи кислорода, который, вступая в химическую реакцию с расплавом металла, превращает его в газообразное вещество и твердое химическое соединение (т. е. сжигает). Окалину и шлаки удаляют из реза напором струи газа. Такой способ применяют для резки металла толщиной до 100 мм и пакетов толщиной до 90 мм за один проход на глубине до 40 м. На глубине 7—8 м для разделки металла толщиной до 500 мм можно применять газовую резку.

Электдокислородная резка (наиболее распространенная) происходит вследствие разогрева металла до температуры его плавления специальным трубчатым электродом с подачей к месту реза струи кислорода под высоким давлением, в которой металл сгорает.

Электродуговая резка малопроизводительна, ее применяют в основном для разделки чугуна, меди, алюминия и других металлов, не поддающихся электрокислородной резке.

При плазменно-дуговой резке пропускается газ (аргон, азот, водород), который увеличивает степень ионизации дуги. Благодаря узкому выходному соплу для истекания плазмы и высокой плотности тока в месте реза можно создавать очень высокие температуры, что дает возможность производить резку любых металлов с большой скоростью.

4. Состав технологической карты на выполнение отдельных видов работ.

В типовых технологических картах предусматривают: характеристики элементов зданий, сооружений и видов работ, охватываемых картой, а также особенности и условия (природные, геологические, производственные), принятые в карте; требования к готовности предшествующих работ, которые обеспечивают необходимый фронт для выполнения работ, предусмотренных каргой; схемы организации строительной площадки или рабочей зоны, где должны быть указаны основные размеры здания (сооружения) или его части и размещение механизмов с определением зон их действия, оперативных складов, путей перемещения материалов, сетей тепло-, электро- и водоснабжения; описание методов и последовательности или совмещения отдельных видов работ, включая разбивку общего объема работ на захватки и ярусы, способы подачи материалов и готовых конструкций к рабочим местам, типы применяемых средств подмащивания, монтажной и технологической оснастки; число и номенклатура материалов, готовых конструкций, изделий и оборудования с определением их по физическим объемам работ; число и типы машин, специальных инструментов, производственного инвентаря; численно-квалификационный состав бригад с учетом применения метода коллективного подряда; график выполнения работ с калькуляцией трудовых затрат; указания по контролю качества работ, включая схемы операционного контроля качества и перечень необходимых актов при- емки ответственных конструкций; решения по охране труда и улучшению его условий.

В типовых технологических картах, предусматривающих выполнение работ в зимних условиях, должны быть указаны особенности режимов бетонирования конструкций, способы временного обогрева или утепления частей сооружения, порядок заделки стыков в конструкциях и др.

Привязка типовой технологической карты к конкретному объекту строительства и его условиям состоит в проверке соответствия этим условиям и уточнении отдельных показателей применительно к местным условиям без нарушения принятых в карте принципиальных решений.

5. Организация геодезического контроля при выполнении основных видов гидротехнических работ.

Геодезические работы в период строительства связаны с разбивкой главной или основной оси гидроузла, а также осей и ответственных точек его элементов: агрегатов, бычков, блоков и секций плотины и т. д. Геодезическая основа, созданная в период изысканий, ни по точности, ни по густоте пунктов не соответствует этим задачам. Основой для выноса осей сооружений гидроузла и массовых разбивочных работ служит вновь созданная плановая разбивочная сеть.

Одну из сторон новой сети совмещают с главной осью сооружения и принимают ее за ось абсцисс. Сеть строят как локальную геодезическую систему со своим началом координат. Для связи с плановой основой, созданной при изысканиях, вновь создаваемая сеть имеет с ней один общий пункт и ориентирное направление.

Разбивочную сеть строят методами триангуляции, полигонометрии, трилатерации или линейно-угловыми построениями.

Пункты сети закрепляют трубчатыми знаками, закладываемыми в скважины и выступающими на 1,2 м над поверхностью земли. Знаки снабжены приспособлениями для быстрого центрирования.

Разбивка судоподъемных сооружений. Разбивочные работы ведут поэтапно в течение всего строительства. Поэтому геодезические работы нуждаются в постоянной разбивочной основе, которая в зависимости от обстоятельств создается в виде осевой сетки или в виде линейно-угловой сети.

Осевую сетку строят при сооружении судоподъемников (слипов), где обычно условия позволяют закрепить и сохранить большое число знаков.

Разбивка осей молов, волноломов, пирсов и причалов. Разбивочные работы при строительстве заградительных и причальных сооружений имеют особенности, обусловленные тем, что данные сооружения полностью или частично располагаются на акватории и возводятся подводным способом без применения перемычек и водоотлива. Проведение геодезических работ осложняется большими глубинами, волнением моря и течениями.

Оси сооружений переносят на дно акватории с помощью плавучих знаков (буев).

Каналы и гидротехнические тоннели. Основными задачами геодезического обеспечения строительства канала являются перенесение на местность его оси и осей связанных с ним сооружений (шлюзов, дюкеров и т. д.), определение границ бетонных и земляных работ, передача проектных отметок на точки сооружений.

Ось канала выносят в соответствии с разбивочным чертежом, в котором даны длины участков трассы, углы ее поворота, а также дополнительные углы, намечаемые на прямолинейных участках не реже. Вынесенные характерные точки оси канала закрепляют временными знаками.

Перед проходкой тоннеля на поверхности вдоль его трассы создают планово-высотное обоснование в виде сети триангуляции или полигонометрии. Для строительства гидротехнических тоннелей используют геодезическое обоснование, создаваемое на площадке гидроузла для перенесения в натуру осей сооружений.

6. Применяемое оборудование для забивки свай.

Для погружения элементов применяют различное сваебойное оборудование, навешиваемое на сухопутные и плавучие копры или краны (дизель- и вибромолоты, вибропогружатели различных типов), подмывные установки, завинчивающие машины (электрокабестаны), агрегаты для вдавливания.

Вибромолоты применяют для забивки металлического шпунта, стальных труб, железобетонных свай небольшой длины.

Вибропогружателями можно погружать в грунт не только сваи, но и сваи-оболочки большего диаметра. Вибропогружатели бывают высокочастотные (с частотой колебаний вибратора 700—1500 Гц) — для погружения металлического или деревянного шпунта и низкочастотные (300—500 Гц) — для погружения железобетонных свай и свай-оболочек большой массы.

Оборудование для подмыва используют для преодоления значительного сопротивления грунта забивным способом или вибропогружением. Размывающую водяную струю подают через трубы с насадками или через полость погружаемого элемента к его концу. В результате ослабления силы трения между частицами грунта, взвешивания их и частичного выноса из скважины погружение элемента в грунт под собственным весом или с применением механических либо вибрационных воздействий значительно облегчается. Погружение с помощью подмыва следует прекращать по достижении нижним концом элемента отметки на 1 —1,5 м выше проектной. Дальнейшее погружение до проектной отметки выполняют механическим или вибрационным способом.

Механизмы для завинчивания свай (кабестаны) применяют при погружении свай способом ввинчивания их в грунт, если в основании находится мощный слой слабых глинистых грунтов с малой несущей способностью или плотный гравелистый грунт и погружение обычных свай затруднительно, а также при подготовке «оснований в непосредственной близости от существующих зданий и сооружений, которые могут получить поврежде-ния от вибрации при забивке или вибропогружении.

Сваи, оборудованные стальным винтовым башмаком, могут быть стальными или железобетонными. Завинчиванием можно погружать вертикальные и наклонные сваи с наклоном 4:1. Висячие сваи, погруженные таким способом, имеют большую несущую способность.

Вдавливание в грунт полых свай под статической нагрузкой примеаяют при залегании в основании сооружения слабых грунтов. Способ обеспечивает высокое качество работ при минимальных затратах.

Копры. Для подвешивания и направления забивного механизма а также для установки, направления и поддерживания погружаемого в грунт элемента применяют специальные агрегаты — копры (башенные, крановые и плавучие, несамоходные и самоходные, универсальные и предназначенные для выполнения одного вида свайных работ), как правило, оборудованные штанговыми или трубчатыми дизель-молотами.

Плавучий копер (рис. 126, а) используют для забивки вертикальных и наклонных свай (длиной до 35 м и массой до 30 т) и шпунта на речных и морских акваториях. Копер может иметь несколько направляющих стрел (многостреловой), что позволяет вести работу несколькими молотами одновременно. Сваебойную установку монтируют на поворотной платформе. Стрела установки можете наклоняться вперед и назад до 18° (маятниковые копры).

Наголовники. При забивке сваи любым молотом в целях сохранения ее оголовка применяют специальный сварной или литой наголовник, соответствующий поперечному сечению сваи (рис. 127, а), в который закладывают амортизирующий вкладыш из прочной и вязкой древесины (дуба, вяза). Кондукторы. При свайных работах на суше в случае строительства сплошной свайной или шпунтовой стенки применяют кондукторы, обеспечивающие заданное направление стенки и прижим элементов друг к другу, а при выполнении работ с воды — навесные и плавучие кондукторы.

Плавучий кондуктор обеспечивает погружение элементов какого-либо одного вида, например свай-оболочек (рис 129, а) или кондуктор на выдвижных опорных сваях для погружения таврового железобетонного шпунта (рис. 129, б).

7. Основные виды транспорта, используемые в гидротехническом строительстве.

Автомобильный транспорт

Достоинствами автотран­спорта являются высокая скорость, маневренность, возможность до­ставки грузов непосредственно к месту складирования или мон­тажа без промежуточных перегрузочных операций. Недостатки: отно­сительно небольшое количество единовременно транспортируемого груза по сравнению с железнодорожным, водным и трубопроводным транспортом, значительная удельная мощность, затрачиваемая на 1 т перевозимого груза, высокая стоимость капитального ремонта. Указанные недостатки являются перво­причиной более высокой стоимости автоперевозок по сравнению с железнодорожным, водным и трубопроводным видами транспорта.

Наиболее целесообразно использование автотранспорта для перевозки грузов на расстояние до 200 км, а при строительстве в труднодоступных районах и перевозке негабаритных грузов — на большие расстояния.

Автомобильный подвижной состав делят на грузовой, пасса­жирский и специальный.

Железнодорожный транспорт

Использование и показатели работы железнодорожного транспор­та. Материалы, полуфабрикаты, сырье и другие грузы, необходимые для гидротехнического строительства, по возможности перевозят железнодорожным транспортом.' Это экономически целесообразно лишь при дальности перевозок более 200 км и значительном грузо­обороте, несмотря на то, что такой вид транспорта практически не зависит от метеорологических условий и наиболее производителен.

Водный транспорт

Практически любое строительство гидротехнических сооружений (на море, реке, озере, водохранилище), за исключением строи­тельства на несудоходных реках, протоках, не может обойтись без использования водного транспорта. В нашей стране имеется огром­ная, хорошо развитая сеть внутренних водных путей общей протя­женностью более 2,3 млн. км (из них свыше 500 тыс. км судоходны), более 2 тыс. крупных озер. Таким образом, речной транспорт является важным звеном в единой транспортной системе страны.

Речной флот, несмотря на сезонность работы, имеет преиму­щества по сравнению с другими видами транспорта. Он экономичен: себестоимость перевозок I т груза в 2—2,5 раза ниже, чем по желез­ным дорогам, идущим параллельно водным путям; производитель

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.