реферат скачать
 

Нитрование ароматических углеводородов. Производство нитробензола

Нитрование ароматических углеводородов. Производство нитробензола

Министерство образования Российской Федерации

Ангарская Государственная Техническая академия

Кафедра Химической технологии топлива



















Курсовая работа

По Технологии нефтехимического синтеза

Тема работы: “Нитрование ароматических углеводородов. Производство нитро-бензола












Выполнил: ст-нт гр.ТТ-99-1

Семёнов И. А.

Проверил: доцент, к.х.н.

Чернецкая Н.В.





Ангарск 2003
План

 

Введение                                                                                                         3

1.    Теоретические основы нитрования                                                                 4

1.1. Общее представление об нитровании                                                             4

1.2. Кинетика процесса нитрования                                                                           6

1.3. Фактор нитрующей активности                                                                             9

1.4. Механизм нитрования ароматических углеводородов                                     10

2. Промышленное производство нитробензола                                        17

2.1. Общие сведения об нитробензоле                                                                                  17

2.2. Процесс получения нитробензола                                                                                  17

2.3. Аппараты для проведения процесса нитрования бензола                                       21

2.4. Техника безопасности при производстве нитробензола                                            22

2.5. Экология                                                                                                                               22

2.6. Разработка новых технологий нитрования                                                                   23

Заключение                                                                                                      24

Приложение 1                                                                                                 25

Приложение 2                                                                                                 26

Список литературы                                                                                        27

 

 


Введение

 

            Нитрования – один из важнейших процессов в химической промышленности. Продукты, получаемые за счёт нитрования, являются полуфабрикатами для производства многих товаров различных назначений от взрывчатых веществ до продукции фармацептической промышленности. В данной работе рассмотрен наиболее распространённый процесс нитрования, а именно нитрования ароматических углеводородов и в частности нитрование бензола для получения нитробензола.

Из ароматических нитросоединений производные бензола выпускаются промышленностью в наибольшем масштабе. Объем производства нитробензола в мире составил в 1985 г. 1700 тыс. т, моно- и динитротолуолов, монохлорбензолов - сотни тысяч тонн. Нитробензол используется как полупродукт в анилинокрасочной, фармацептической, парфюмерной промышленности. Исходя из нитробензола, получают анилин, бензидин, м-нитроанилин, м-фенилендиамин, п-аминосалициловую кислоту (ПАСК). Нитробензол растворяет многие органические соединения, в том числе нитрат целлюлозы, образуя с ним желатинообразную массу, благодаря чему он используется во многих отраслях промышленности как растворитель. В нефтяной промышленности нитробензол используют как растворитель для очистки смазочных масел.

            В работе достаточно подробно рассмотрен механизм и кинетика процесса нитрования ароматических углеводородов, описаны различные нитрующие агенты, а так же описаны их свойства. Т.к. для промышленных исполнений процесса нитрования присущи такие проблемы, как техника безопасности при производстве (в частности нитробензола), проблемы селективности и выхода целевого продукта, развития технологии, экологии производства, поэтому в данной работе они тоже были затронуты в общих чертах.


1. Теоретические основы нитрования

 

1.1. Общее представление об нитровании

 

Нитрование - введение нитрогруппы – NO2 в молекулы органических соединений. Может проходить по электрофильному, нуклеофильному и радикальному механизмам; активные частицы в этих реакциях - соответственно катион нитрония NO2, нитрит - ион NO2 и радикал NO2. нитрование может осуществляться по атомам С, N, О замещением атома водорода (прямое нитрование) или других функциональных групп (заместительное нитрование) либо в результате присоединения группы NO2; по кратной связи.

            Нитрогруппу в молекулу ароматического углеводорода можно вводить различными путями; главным из них является нитрование углеводородов смесью азотной и серной кислот (нитрующая смесь) в жидкой фазе, последняя одновременно является катализатором процесса, водоотнимающим средством и веществом, способствующим более полному использованию азотной кислоты и препятствующим окислительным процессам. Но по механизму все способы нитрования ароматических углеводородов идут по электрофильному замещению.

            Нитрования как процесс принято называть взаимодействие органического соединения с азотной кислотой или её производными, в результате которого атом водорода при одном или нескольких атомах углерода замещается нитрогруппой. В общем случае для процесса нитрования ароматических углеводородов (в ароматическое кольцо) можно написать уравнение:


ArH + NO2+           Ar-NO2 +H+


            При нитровании только азотной кислотой реакция может быть выражена уравнением:

ArH + HONO2           Ar-NO2 +H2O


            Это уравнение даёт лишь общее представление о ходе реакции, но не характеризует всего сложного процесса нитрования, протекающего в несколько стадий; в действительности в реакцию с ароматическими углеводородами вступает не сама азотная кислота, а продукты её превращения.

            Как видно из приведённого уравнения, при нитровании азотной кислотой введение каждой нитрогруппы в молекулу углеводорода сопровождается образованием молекулы воды. Это значительно уменьшает концентрацию азотной кислоты и понижает её нитрующую способность,  а образующаяся слабая азотная кислота увеличивает степень окисления углеводородов. Поэтому нитрование углеводородов только азотной кислотой осуществляют крайне редко; в том случае необходим избыток азотной кислоты по сравнению с теоретически требуемым, а реакцию надо проводить при низких температурах, чтобы ослабить протекание нежелательных окислительных процессов.

            Для связывания воды, выделяющейся в процессе нитрования, применяют водоотнимающие вещества – серную кислоту, полифосфорные кислоты, уксусных ангидрид, трёхфтористый бор. Серная кислота – наиболее доступное и дешёвое вещество для этих целей. Она эффективно связывает воду и переводит азотную кислот в активную нитрующую форму; это позволяет резко снизить расход азотной кислоты почти до теоретического.

            Роль серной кислоты заключается не только в связывании реакционной воды. Ещё в 1889 г. В. В. Марковников установил, что наличие в реакционной среде серной кислоты ускоряет реакцию нитрования. Следовательно, серную кислоту можно рассматривать как катализатор этой реакции. Заводская практика подтвердила, что нитрование ароматических углеводородов смесью азотной и серной кислот протекает значительно быстрее, чем при действии безводной азотной кислоты, даже взято в большом избытке.

            Для промышленных процессов нитрования (и сульфирования) в качестве водоотнимающего средства предложен трёхфтористый бор BF3 . при добавлении достаточного количества трёхфтористого бора реакции сульфирования и нитрования можно проводить стехиометрическими количествами соответствующих кислот (серной и азотной). Полагают, что реакции протекают по следующим схемам:


ArH + HNO3 + BF3         Ar-NO2 + BF3·H2O


ArH + H2SO4 + BF3          Ar-SO3H + BF3·H2O


            По окончании реакции добавляют воду; при этом моногидрат фтористого бора превращается в дигидрат BF3·2H2O, который можно отогнать в вакууме. Далее его обрабатывают фтористым кальцием


2BF3·2H2O + CaF2            Ca(BF4)2 + 4H2O


 и при нагревании регенерируют BF3:


Ca(BF4)2          2BF3 + CaF2


Особенности проведения нитрования зависят как от использующихся реагентов, так и от субстрата реакции.

Реагенты для проведения реакции нитрования:

1. HNO3 (63-65%, d 1.35 г/мл, товарный продукт) + H2SO4 (96%). Наиболее распространенный.

2. HNO3 (98%, d 1.5 г/мл, также товарный продукт) + H2SO4 (96%-100 %). Для мало реакционноспособных соединений.

3. HNO3 (98%) + SO3 (4-63%), олеум. Для очень мало реакционноспособных соединений.

4. К(Na)NO3 или NH4NO3 + H2SO4 (96%). Распространенный реагент для получения полинитропроизводных.

5. HNO3 (98%, d 1.5 г/мл) + (CH3CO)2O (или СН3СООН). Для реакционноспособных соединений, селективный реагент. Реагент дорогой, поэтому необходимо обосновать экономическую целесообразность его использовании.

6. HNO3 (d 1,3 - 1,5). Для реакционноспособных соединений. Осложнение – побочная реакция окисления.


1.2. Кинетика процесса нитрования


Нитрование ароматических углеводородов смесями азотной и серной кислот протекает по ионному механизму. В. В. Марковников указал, что при взаимодействии серной и азотной кислот образуется нитросерная кислота:


HNO3 + H2SO4               HOSO2-ONO2 + H2O


            В дальнейшем было установлено (Титов, Инголд, Беннет), что нитросерная кислота в водной среде диссоциирует с образованием нитроний-катиона:

H2O

HOSO2-ONO2              NO2+ + HSO4-

            Ионы нитрония образуются и в концентрированной (безводной) азотной кислоте, не содержащей серной кислоты:


2HNO3                NO3H+ + NO3-


 


NO3H2+               NO2+ + H2O

При добавлении воды к азотной кислоте диссоциация HNO3  c образованием нитроний-катиона NO2+ подавляется почти полностью,  концентрация этих ионов становится ничтожно малой.

            Серная кислота реагирует не только с азотной кислотой, но и с водой, образуя ион гидроксония H3O+ и бисульфатный анион HSO4-:


H2SO4 + H2O               H3O+ + HSO4-

            Таким образом, процесс взаимодействия азотной и серной кислот можно выразить следующим уравнением:

H2O

 
                                      

HNO3 + 2H2SO4                NO2+ + H3O+ + 2HSO4- (1)


            Следовательно, главным активирующим действием серной кислоты является превращение азотной кислоты в наиболее сильное нитрующее средство – нитроний-катион NO2+

            В безводной азотной кислоте (без серной кислоты) концентрация иона нитрония составляет около 2 % вследствие самодегидратации.


2HNO               NO2+ + NO3-  + H2O (2)


Существование NO2+ доказано с помощью спектров комбинационного рассеяния (наблюдается интенсивная полоса при 1400 см-1). В растворах HNO3 + H2SO4; HNO3 + HClO4; HNO3 + HBF4 азотная кислота практически полностью ионизована, были выделены в твердом виде соли катиона нитрония NO2+X- (X = ClO4, HSO4, BF4). Добавление воды к концентрированной азотной кислоте приводит к уменьшению содержания иона NO2+, и при наличии более 5 % воды его сигнал в спектре КР исчезает. Реакция нитрования по мере добавления воды замедляется, сохраняя первый порядок по субстрату.

В органических растворителях, таких как CCl4, ацетонитрил, нитрометан, сульфолан, образование катиона NO2+ по уравнению (2) является стадией, определяющей скорость нитрования, вследствие чего реакция имеет нулевой порядок по ароматическому субстрату. Добавки веществ, влияющих на концентрацию NO2+, сказываются на скорости нитрования. Так, введение нитратов или воды, подавляя ионизацию, замедляет нитрование.

В среде концентрированной серной кислоты равновесие целиком сдвинуто вправо (1). Исследование спектроскопическими (КР-, ИК-, УФ- спектроскопия), криоскопическим и кондуктометрическим методами привело к заключению, что полное превращение HNO3 в NO2+ сохраняется при снижении концентрации H2SO4 до 90 %; при концентрации H2SO4 82-70 % присутствуют только неионизированные молекулы HNO3, при разбавлении H2SO4 ниже 70 % появляются анионы NO3-, а ниже 15 % присутствуют только ионы NO3-. По данным спектров ЯМР 14N, для 0,5 М раствора HNO3 степень превращения в NO2+ в среде 91,2 %-й H2SO4 составляет 92 %, в 88,6 %-й – 54 %, в 86,2 %-й – 12 %, а в 81 %-й содержание NO2+ ниже предела чувствительности метода.

            Нитрование ароматических углеводородов нитроний-катионом протекает как ионно-комплексная реакция. Сначала нитроний катион NO2+  присоединяется к ядру ароматического углеводорода,



затем от образовавшегося соединения отрывается протон.



            Более подробно  этот процесс можно расписать через образование π- и σ- комплекса. Лимитирующей стадией является образование σ- комплекса, т.е. скорость процесса нитрования определяется скоростью присоединения нитроний-катиона к углеродному атому в молекуле ароматического углеводорода, так как протон отщепляется от этого углеродного атома почти мгновенно. Лишь в отдельных случаях нитрования в пространственно затрудненное положение отмечался значительный первичный кинетический изотопный эффект, обусловленный, очевидно, ускорением обратной реакции на стадии образования σ- комплекса из-за стерических препятствий и именно в таких случаях стадия образования σ- комплекса не является лимитирующей. К таким примерам относятся нитрование антрацена в положение 9 солями нитрония (KH/KD=6,1 в ацетонитриле, 2,6 в нитрометане), нитрование 1,3,5-три (трет-бутил)-2-R-бензолов азотной кислотой в серной кислоте (R=F, NO2, CH3, KH/KD=2,3-3,7). Но в большинстве случаев стадия образования σ- комплекса является определяющей для скорости процесса.


 

            Поэтому уравнение скорости нитрования будет выглядеть так:


Wнитр =

K2 >> K1 и K-1, так как отсутствует кинетический изотопный эффект и связывание протона не ускоряет реакцию. Величиной K-1 пренебрегают.

В концентрированной серной кислоте равновесие практически нацело сдвинуто вправо. Тогда кинетическое уравнение можно представить в следующем виде:

 

 

Как видно из уравнения, скорость реакции обратно пропорциональна концентрации воды и сульфат иона и прямо зависит от концентрации азотной кислоты. Это хорошо просматривается в условиях проведения реакции нитрования ряда ароматических соединений, содержащих электронодонорные или электроноакцепторные заместители (Таблица 1).


1.3. Фактор нитрующей активности


Нитрующая способность смеси серной и азотной кислот характеризуется фактором нитрующей активности (Ф.Н.А.):


            В этой формуле дробь характеризует степень возрастания концентрации серной кислоты после израсходования всей HNO3 и выделения соответсвующего коли-

Таблица 1.

Условия реакции нитрования некоторых ароматических соединений ArX

 

Х

Избыток HNO3 (моль)

Состав нитрующей смеси, %

Температура, 0С

HNO3

H2SO4

H2O

NHCOCH3

0

31

48

21

0 – 5

CH3

0

24

59

17

40

H

0

20

65

15

40-60

Cl

0

18

71

11

60-80

COOC2H5

0,1

18

75

7

80-95

NO2

0,1

18

80

2

90-100

1-CH3,2,4-ди-NO2

0,15

18

82

0

100-120


чества H2O:


            где 18 и 63 – молекулярные массы воды и азотной кислоты.

Следовательно, Ф.Н.А. численно равен концентрации отработанной H2SO4 при условии полного использования HNO3. При этом Ф.Н.А., тем более высокое, чем ниже реакционная способность этого соединения. Для каждого процесса нитрования имеется предел Ф.Н.А., ниже которого нитрование практически не идёт. Когда азотная кислота почти полностью израсходована на нитрование, фактор нитрующей активности приближается к концентрации серной кислоты в отработанной смеси

Расход азотной кислоты на нитрование определяется стехиометрическими соотношениями; это количество несколько увеличивают с учётом побочных процессов окисления, потерь кислоты и др., а так же для интенсификации процесса и более полного превращения ароматического соединения. Необходимый избыток азотной кислоты сверх расчётного определяют для каждого нитруемого углеводорода опытным путём. Естественно, что степень использования азотной кислоты оказывается в таком случае ниже 100 %.

            Количество вводимой серной кислоты определяется фактором нитрующей активности Ф.Н.А. В таблице 2 приведены показатели промышленных процессов нитрования некоторых ароматических углеводородов.

1.4. Механизм нитрования ароматических углеводородов


Процесс нитрования углеводородов смесью азотной и серной кислот протекает в гетерогенной среде, так как образуются две фазы – органическая (углеводородная) и кислотная. Благодаря частичной взаимно растворимости реагирующие компоненты распределяются между двумя фазами, и реакция протекает как в этих фа-

Таблица 2.

Показатели процессов нитрования некоторых ароматических углеводородов

Исходный углеводород

нитросоединение

Ф.Н.А.

Расход HNO3 в % от теоретического

Бензол

мононитробензол

70

103–105

Мононитробензол

Динитробензол

88

110-115

Толуол

Мононитротолуол

70

103-105

Ксилол

Динитроксилол

72

110-115

Нафталин

Мононитронафталин

61

103-105

Мононитронафталин

Динитронафталин

72

130-140

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.