реферат скачать
 

Реферат: Звезды

Реферат: Звезды

ИЗМЕРЕНИЕ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ХАРАКТЕРИСТИК ЗВЕЗД Автор: Поваляев Иван 11 класс «а», школа № 865 1. Приборы, с помощью которых ведется наблюдение.

Реферат: Звезды

1.1. Оптические телескопы.

Невооруженным глазом на небе можно наблюдать около 6000 звезд до 6-ой звездной величины; с помощью телескопов около 2 миллиардов до 21-ой звездной величины. Таблица 1: Число ярче данной звездной величины
Предельная звездная величиначисло звезд Предельная звездная величина число звезд
6,04 85013,05 700 000
7,014 30015,032 000 000
8,041 00017,0150 000 000
9,0 117 00019,0560 000 000
10,0 324 00021,02 000 000 000
11,0 870 000———————————

График 1: Число звезд данной звездной величины

Реферат: Звезды

Наибольшее количество обнаруженных звезд приходится на 15-17 звездную величину (см. график). Как было подсчитано вблизи нас на одну звезду приходится в среднем объем около 357 кубических световых лет и среднее расстояние между звездами составляет порядка 9,5 световых лет. Большинство звезд составляют карлики 14-15 абсолютной звездной величины и со светимостью 0,01 светимости Солнца. Оптический телескоп был первым из появившихся приборов для наблюдения за звездами (изобретен примерно в 17 веке Галилеем) существует 3 типа оптических телескопов: рефракторы (линзовые), рефлекторы (зеркальные) и комбинированные зеркально-линзовые системы. В настоящее время глазами в телескоп естественно никто не смотрит, а используют фотопластинки, которые в дальнейшем исследуют с помощью различных приспособлений.

1.2. Другие приборы.

Также в астрономии используются приборы, позволяющие разложить свет на спектр (спектрограф), измерить яркость звезды (фотометры) и измерить тепло, приходящее от звезды (термоэлементы). Создание таких приборов требует большой точности, которая стала возможна только при современном уровне развития науки. Естественно, что в наблюдении с помощью любых приборов очень большое влияние могут оказать помехи, создаваемые Землей: ее атмосферой, магнитным полем, шумами, вызванными человеческой деятельностью. Поэтому обсерватории и станции наблюдения располагают в горах, далеко от больших городов, а с развитием космонавтики выводят на околоземную орбиту, что довольно дорого, но позволяет почти полностью исключить воздействие атмосферы на показания приборов. 2. Спектры звезд, цель и методы их изучения, информация, содержащаяся в спектрах.

2.1. Типы спектров.

Современная наука выделяет 3 вида спектров: сплошной (непрерывный) спектр, линейчатый спектр (спектр излучения или поглощения) и полосатый спектр. Изучая спектры звезд можно выяснить химический состав короны звезды (и, следовательно, ее температуру), а также скорость движения звезды относительно солнечной системы и скорость вращения ее вокруг своей оси. Согласно спектрам звезды делятся на спектральные классы. Таблица 2: Спектральные классы звезд.
Спектральный классЦветТемпература короны в KВещества, линии которых в данном классе достигают своей наибольшей интенсивностиТипичные яркие звезды
О5Голубоватый30 000Ионизированный гелий——————
В)Белый20 000Гелийb Ю. Креста
А)Белый10 000ВодородСириус, Вега
F0Желтоватый8 000Ионизированные металлыКанопус
G0Желтый6 000Нейтральные металлыСолнце
К)Оранжевый4 500Присутствуют слабые полосы окиси титанаАрктур
М)Красный3 000Сильные полосы окиси титана главенствуютАнтарес

2.2. Химический состав звезд.

Химический состав ядра звезды с помощью спектрального анализа определить невозможно; можно только предполагать, исходя из теоретических расчетов. Химический состав атмосфер звезд и Солнца в основном почти одинаков и близок к химическому составу земной коры, за исключением того, что на Земле нет заметных количеств водорода и гелия (см. таблицу). Таблица 3: сравнительное изобилие х. э. в атмосферах звезд, земной коре и каменных метеоритах.
ЭлементЗвездыСолнцеЗемная кораКаменные метеориты
Водород11,411,58,36,9
Гелий10,210,200
Углерод6,47,46,36,1
Кислород8,09,08,58,4
Натрий7,17,27,36,4
Магний7,57,87,27,7
Алюминий6,96,47,86,8
Кремний7,57,38,27,8
Железо6,77,27,27,6
Ïðèìå÷àíèå: â òàáëèöå äàí lg. среднего числа атомов в столбе атмосферы сечением 1 см2 для звезд и солнца по сравнению с такими же, но относительными данными для Земли и метеоритов. В химическом составе некоторых звезд возможны некоторые отклонения от средней нормы. Так, есть звезды, несколько более богатые неоном или стронцием, в некоторых холодных звездах встречается аномально много изотопа углерода 13.

Рисунок 1: определение расстояния методом параллакса.

Реферат: Звезды

3. расстояния до звезд.

3.1. Метод параллакса.

Метод параллакса является на данный момент наиболее точным способом определения расстояний до звезд, однако, он не применим к звездам, отстоящим от нас на расстояние больше, чем 300 пс. Метод параллакса заключается в измерении с высокой точностью углов a и b и на основе их, а также зная смещение Земли за полгода (2 а. Е.) возможно определить расстояние из тригонометрии.

3.2. По диаграмме Герцшпрунга - Рассела.

Если знать светимость звезды и ее видимый блеск, то расстояние до нее находится по формуле lg.(D)=(m-M+7,5)/5, где D - расстояние в световых годах, M - абсолютная звездная величина (видимый блеск звезды, если бы она находилась на расстоянии 10 па), m - видимая звездная величина. Как выяснили ученые, спектры звезд являются хорошими указателями светимости, а следовательно, и расстояния до них.

График 2: диаграмма спектр-светимость (Герцшпрунга - Рессела)

Реферат: Звезды

Зная расстояния до некоторого числа звезд, вычисленные методом параллакса, можно было вычислить светимости и сопоставить их со спектром тех же звезд, (см. диаграмму спектр-светимость). Из диаграммы видно, что каждому определенному подклассу звезд (например A1) соответствует определенная светимость, таким образом, достаточно точно определить спектральный класс и можно выяснить ее светимость, а следовательно, и расстояние. Иногда определенному классу соответствует другая светимость, но в этом случае и спектр у них несколько другой. Спектры карликов и гигантов различаются интенсивностью определенных линий или их пар, причем это отличие можно выяснить, исследуя близко находящиеся звезды. Это отличие связано с тем, что атмосферы гигантов обширнее и разреженнее. Точность определения расстояния таким способом составляет ~20%.

3.3. По относительным скоростям.

Косвенным показателем расстояния до звезд являются их относительные скорости: как правило, чем ближе звезда, тем больше смещается она по небесной сфере. Определить таким способом расстояние, конечно нельзя, но этот способ дает возможность “вылавливать” близкие звезды. Также существует другой метод определения расстояний по скоростям, применимый для звездных скоплений. Он основан на том, что все звезды, принадлежащие одному скоплению движутся в одном и том направлении по параллельным траекториям. Измерив лучевую скорость звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды смещаются относительно очень удаленных, то есть условно неподвижных звезд, можно определить расстояние до интересующего нас скопления. Расстояния до галактик приблизительно можно определить по расстоянию до находящихся в этих галактиках цефеид.

3.4. Цефеиды.

Периодические изменения блеска характерны не только для двойных звезд, но и для переменных звезд — так называемых “цефеид”. Первой из обнаруженных цефеид была d цефея, которая меняла свой блеск с амплитудой 1, температуру (на 800K) ,размер и спектральный класс. Цефеиды — это неустойчивые звезды спектральных классов от F6 до G8, которые пульсируют в результате нарушения равновесия между силой тяжести и внутренним давлением, причем кривая изменения их параметров напоминает гармонический закон. С течением времени колебания ослабевают и затухают; к настоящему моменту было обнаружено постепенное прекращение переменности у звезды RU Жирафа, обнаруженной в 1899 году. К 1966 году ее переменность полностью прекратилась. Периоды различных цефеид от 1,5 часов до 45 суток. Все цефеиды — гиганты большой светимости, причем светимость строго зависит от периода по формуле M=-0,35-2,08lg(T). Так как, в отличие от диаграммы спектр - светимость, зависимость четкая, то и расстояния можно определять более точно: зная из наблюдений период (T), можно найди абсолютную звездную величину (M), а зная абсолютную звездную величину и найдя из наблюдений относительную (m) можно найти расстояние. Такой метод нахождения расстояний применяется не только для определения расстояния до самих цефеид, но и для определения расстояний до далеких галактик, в составе которых удалось обнаружить цефеиды (это сделать не очень трудно, так как цефеиды обладают достаточно большой светимостью). Существуют также другие типы переменных звезд, которые не являются цефеидами. Обнаружены, например, переменные звезды, у которых период около 1 года, существуют также вообще неправильные звезды, в периодах которых не удалось выяснить никакой закономерности. В 70-ых годах внимание астрономов привлекли красные карлики, блеск которых неожиданно возрастает в несколько сотен раз в течение нескольких минут, причем эти вспышки происходят не только в оптическом диапазоне. Такие звезды назвали вспыхивающими.

4. Яркости и светимости звезд.

Существую две величины, характеризующие звезду с точки зрения светимости: это абсолютная звездная величина (видимый блеск звезды, если бы она находилась на расстоянии 10 пс) и светимость (количество энергии, испускаемое звездой за 1 с), и одна величина, характеризующая звезду с точки зрения того, насколько хорошо мы ее видим: видимая звездная величина. Естественно, что видимая звездная величина зависит не только от светимости, но и от расстояния до звезды. Таблица 4: десять самых ярких звезд и Солнце.
Названиевидимая звездная величина (m)Спектральный классАбсолютная звездная величина (M)СветимостьРасстояние в св. Годах
Сириус-1,6A01,3238,7
Канопус-0,9F0-4,65200~180
a Центавра0,3G04,71,04,29
Вега0,1A00,54826,5
Капелла0,2G0-0,512045
Арктур0,2K00,07636
Ригель0,3B8-6,2~23000~650
Процион0,5F52,85,811,3
Ахернар0,6B5-2,6~800~140
b Центавра0,9B1-3,1~1300~200

Солнце

-26,72

G4

4,8

1

8 сек.

Таблица 5: десять самых близких звезд и Солнце.
НазваниеВидимая звездная величина спектральный классАбсолютная звездная величинаСветимостьРасст. в световых годах
a Центавра A0,3G04,71,04,3
a Центавра B1,7K56,10,284,3
a Центавра C11M5e15,4

5,2*10-5

4,3
Звезда Барнарда9,5M513,2

4,0*10-4

6,0
Вольф 35913,5M6e16,6

1,7*10-5

7,7
Люйтен- 726-8 A12,5M6e16,6

4*10-4

7,9
Люйтен- 726-8 B13,0M6e15,6

3*10-4

7,9
Лаланд 211857,5M210,5

4,8*10-3

8,2
Сириус A-1,6A01,3238,7
Сириус B7,1Б. Карлик10,0

8*10-3

8,7

Солнце

-26,72

G4

4,8

1

8 сек.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.