реферат скачать
 

Курсовая: Вселенная и процессы в ней

Курсовая: Вселенная и процессы в ней

Казанский Химико-Технологический Институт им. Кирова Реферат на тему:

Вселенная и процессы в ней

Выполнили: Студенты группы 93-83: Булыгин А.В. и Андреев Н.С. Город Казань 29 октября 2003 год. Рассказывать про вселенную и процессы в ней можно очень много. Так как вселенная огромна то и процессов в ней очень много, да и тема очень интересна. Но так как у нас есть ограничение по количеству страниц, то я расскажу про самые интересные её процессы. Думаю, правильнее было бы начать с происхождения вселенной. История Вселенной согласно стандартной модели Большого взрыва В нулевой момент времени Вселенная возникла из сингу­лярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012 К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступ­ные пониманию в рамках современной физики. Мы можем лишь размышлять над тем, каковы были те первые мгнове­ния; например, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горя­чих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия. В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой, энергии»; пока плотность энергии фотонов оставалась достаточно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма- излучения (фотонов высокой энергии), они рождаются парами, состо­ящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продол­жалось до тех пор, пока плотность энергии фотонов превыша­ла значение пороговой энергии образования частиц. Когда возраст Вселенной достиг одной сотой доли секун­ды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества! Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодейство­вать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиля­ции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объеди­нившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной. Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т.д.) и античастицами (антипротонами, анти­нейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Через 3 мин после Большого взрыва температура Вселен­ной понизилась до 109 К, и возникли подходящие условия для образования атомов гелия: на это были затрачены практиче­ски все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количе­ственной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрач­ной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение. После того как вещество стало прозрачным для электро­магнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, состав­лявшего основную часть материи Вселенной. Тяготение соз­дало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявше­го плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Образо­вались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоп­лениях, - когда Вселенная как целое разлеталась в разные стороны? Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли суще­ствовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фраг­ментации, приведший к образованию облаков меньших разме­ров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности нача­лось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флукту­аций плотности в расширяющемся первичном шаре сформиро­вались многочисленные (малые) галактики, которые с течени­ем времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры. Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштаб­ной структуре сегодняшней Вселенной отсутствуют. Вселен­ная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галакти­ки и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Согласно общепринятой точке зрения, микроволновое фоно­вое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, т.е. наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволново­го фонового излучения из расширяющегося первичного огнен­ного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблю­даемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108 :1, - М.Рис высказал предположение, что фоновое излучение может быть результа­том «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые ча­стично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смеще­ния, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение. Поведав о теории возникновения вселенной, думаю, было бы глупо не рассказать о таком её процессе, как о возникновении её наикрасивейших «жителях» - звёздах. Образование звезд Рождение звезды длится миллионы лет и скрыто от нас в недрах темных облаков, так что этот процесс практически недоступен прямому наблюдению. Астрофизики пытаются исследовать его теоретически, с помощью компьютерного моделирования. Превращение фрагмента облака в звезду сопровождается гигантским изменением физических условий: температура вещества возрастает примерно в 106 раз, а плотность в 1020 раз. Колоссальные изменения всех характеристик формирующейся звезды составляют главную трудность теоретического рассмотрения ее эволюции. На стадии подобных изменений исходный объект уже не облако, но еще и не звезда. Поэтому его называют протозвездой (от греч. “протос” — первый). В общих чертах эволюцию протозвезды можно разделить на три этапа, или фазы. Первый этап — обособление фрагмента облака и его уплотнение. Вслед за ним наступает этап быстрого сжатия. В его начале радиус протозвезды примерно в миллион раз больше солнечного. Она совершенно не прозрачна для видимого света, не прозрачна для инфракрасного излучения с длиной волны больше 10 мкм. Излучение уносит излишки тепла, выделяющегося при сжатии. Так что температура не повышается и давление газа не препятствует коллапсу. Происходит быстрое сжатие, практически свободное падение вещества к центру облака. Однако по мере сжатия протозвезда делается все менее прозрачной, что затрудняет выход излучения и приводит к росту температуры газа. В определенный момент протозвезда становится практически непрозрачной для собственного излучения. Температура, а вместе с ней и давление газа быстро возрастают, сжатие замедляется. Повышение температуры вызывает значительные изменения свойств вещества. При температуре в несколько тысяч градусов молекулы распадаются на отдельные атомы, а при температуре около 10 тыс. градусов, атомы ионизируются, т.е. разрушаются их электронные оболочки. Эти энергоемкие процессы на некоторое время задерживают рост температуры. Затем он возобновляется. Протозвезда быстро достигает состояние, когда сила тяжести практически уравновешена внутренним давлением газа. Но поскольку тепло все же понемногу уходит наружу, а иных источников, кроме сжатия, у протозвезды нет, она продолжает потихоньку сжиматься и температура в ее недрах все увеличивается. Наконец температура в центре протозвезды достигает нескольких миллионов градусов, и начинаются термоядерные реакции. Выделяющееся при этом тепло полностью компенсирует охлаждение протозвезды с поверхности. Сжатие прекращается. Протозвезда становится звездой. Но есть ещё много интересных явлений и процессов связанных со вселенной. Один из них это чёрные дыры. Они интересны всем, кто когда – либо смотрел фильмы про космические сражения, всем кто по ночам любит смотреть в небо и думать: «А, что же там далеко, далеко, сейчас происходит». Итак, черные дыры. Черные дыры вселенной Сегодня астро­физики все больше убеждаются, что черные дыры - это реаль­ность. Математические расчеты показывают - невидимые гиганты есть. Несколько лет назад группа американских и японских ас­трономов направила свой телескоп на созвездие Гончих Псов, на находящуюся там спиральную туманность М106. Эта галак­тика удалена от нас на 20 миллионов световых лет, но ее можно увидеть даже с помощью любительского телескопа. При внимательном изучении оказалось, что у туманности М106 есть одна редкая особенность - в ее центральной части существует природный квантовый генератор - мазер. Это газо­вые облака, в которых молекулы благодаря внешней «накачке» излучают радиоволны в микроволновой области. Мазер помогает точно определить свое местоположение и скорость облака, а в итоге - и других небесных тел. Японский астроном Макото Мионис и его коллеги во время наблюдений туманности М106 обнаружили странное поведение ее космического мазера. Оказалось, что облака вращаются вокруг какого-то центра, удаленного от них на 0,5 светового года. Особенно заинтриговала астрономов особенность этого враще­ния: периферийные слои облаков перемещались на четыре мил­лиона километров в час! Это говорит о том, что в центре со­средоточена гигантская масса. По расчетам она равна 36 мил­лионам солнечных масс.

Курсовая: Вселенная и процессы в ней

(Рис. 1 Галактика М87)

М106 - не единственная галактика, где подозревается черная дыра. В туманности Андромеды, скорее всего, тоже есть и примерно такая же по массе - 37 миллионов Солнц. Предполагается, что и в галактике М87 чрезвычайно интен­сивном источнике радиоизлучения - обнаружена черная дыра, в которой сосредоточено 2 миллиарда масс Солнца! Советский физик Яков Зельдович и его американский коллега Эдвин Солпитер сообщили о разработанной ими модели. Модель показала: черная дыра притягивает газ из окружающего про­странства, и вначале он собирается в диск возле нее. От столкновений частиц газ разогревается, теряет энергию, ско­рость и начинает по спирали приближаться к черной дыре. Газ, нагретый до нескольких миллионов градусов, образует вихрь, имеющий форму воронки. Его частицы мчатся со скоро­стью 100 тысяч километров в секунду. В конце концов, вихрь газа доходит до «горизонта событий» и навечно исчезает в черной дыре. Мазер в галактике М106, находится в газовом диске. Черные дыры, возникающие во Вселенной, судя по тому, что наблюдали американские и японские астрономы в спиральной туманности М106, обладают несравненно большей массой, нежели те, о которых говорит теория Оппенгеймера. Он рассмотрел случай коллапса одной звезды, масса которой не более трех солнечных. А как обра­зуются такие гиганты, которые астрономы уже наблюдают, объ­яснений пока нет. Курсовая: Вселенная и процессы в ней Последние компьютерные модели показали, что газовое об­лако, находящееся в центре нарождающейся галактики, может породить огромную черную дыру. Но возможен и другой путь развития: скопление газа вначале распадается на множество боле мелких облаков, которые дадут жизнь большому числу звезд. По этой гипотезе черная дыра есть почти в каждой галак­тике, в том числе и в нашей, где-то в центре Млечного Пути. (Рис. 2 Cygnus XI) Наблюдения так называемых систем двойных звезд, когда в телескоп видна лишь одна звезда, дают основание считать, что невидимый партнер - черная дыра. Звезды этой пары рас­положены так близко одна к другой, что невидимая масса «высасывает» вещество видимой звезды и поглощает его. В не­которых случаях удается определить время оборота звезды во­круг ее невидимого партнера и расстояние до невидимки, что позволяет рассчитать скрытую от наблюдения массу. Первый кандидат на такую модель - пара, обнаруженная в начале 70-х годов. Она находится в созвездии Лебедя (обозначена индексом Cygnus XI) и испускает рентгеновские лучи. Здесь вращаются горячая голубая звезда и, по всей ве­роятности, черная дыра с массой, равной 16 массам Солнца. Другая пара (V404) имеет невидимую массу в 12 солнечных. Еще одна подозреваемая пара - рентгеновский источник (LMCX3) в девять солнечных масс находится в Большом Магел­лановом Облаке. Гипотезы и парадоксы Общая теория относительности, как известно, предска­зала, что масса искривляет пространство. И уже через четыре года после опубликования работы Эйнштейна этот эффект был обнаружен астрономами. При полном солнечном затмении, про­водя наблюдения с телескопом, астрономы видели звезды, ко­торые на самом деле были заслонены краем черного лунного диска, покрывшего Солнце. Астрономы теперь точно знают, что под влиянием «линзы тяготения», которую представляют собой тяжелые звезды и, прежде всего черные дыры, реальные позиции многих небесных тел на самом деле отличаются от тех, что нам видятся с Земли. Далекие галактики могут выглядеть для нас бесформен­ными и в виде «капсулы». Это означает: тяготение столь ве­лико и пространство так закручено, что свет проходит по кругу. Поистине там можно увидеть то, что происходит за уг­лом. Вообразим совершенно невероятное: некий отважный космо­навт решил направить свой корабль к черной дыре, чтобы по­знать ее тайны. Что он увидит в этом фантастическом путеше­ствии? По мере приближения к цели часы на космическом корабле будут все больше и больше отставать - это вытекает из тео­рии относительности. На подлете к цели наш путешественник окажется как бы в трубе, кольцом окружающей черную дыру, но ему будет казаться, что он летит по совершенно прямому тон­нелю, а вовсе не по кругу. Но космонавта ждет еще более удивительное явление: попав за «горизонт событий» и двига­ясь по трубе, он будет видеть свою спину, свой затылок... Общая теория относительности говорит, что понятия «вовне» и «внутри» не имеют объективного смысла, они отно­сительны также, как указания «налево» или «направо», «вверх» или «вниз». Вся эта парадоксальная путаница с на­правлениями очень плохо согласуется с нашими повседневными оценками.

Курсовая: Вселенная и процессы в ней

(Рис.3 Большая Туманность Ориона)

Как только корабль пересечет границу черной дыры, люди на Земле уже не смогут ничего увидеть из того, что там бу­дет происходить. А на корабле остановятся часы, все краски будут смешаны в сторону красного цвета: свет потеряет часть энергии в борьбе с гравитацией. Все предметы приобретут странные искаженные очертания. И, наконец, даже если эта черная дыра будет всего вдвое тяжелее, чем наше Солнце, притяжение станет столь сильным, что и корабль, и его гипо­тетический капитан будут вытянуты в шнурок и вскорости ра­зорваны. Материя, попавшая внутрь черной дыры, не сможет противостоять силам, влекущим ее к центру. Вероятно, мате­рия распадется и перейдет в сингулярное состояние. Согласно некоторым представлениям, эта распавшаяся материя станет частью какой-то иной Вселенной - черные дыры связывают наш космос с другими мирами. Как и все тела в природе, звёзды не остаются неизмен­ными, они рождаются, эволюционируют и, наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе. Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образо­вания распались на отдельные звёзды - впервые в истории че­ловечества люди наблюдали, рождение звёзд буквально на гла­зах этот беспрецедентный случай показал астрономам, что звёзды могут рождаться за короткий интервал времени, и ка­завшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказа­лись справедливыми. В результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие чёрные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят чёр­ными, так как не испускают собственного света и находятся между нами и яркими звёздами, свет от которых они засло­няют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звёзд.

Курсовая: Вселенная и процессы в ней

(Рис. 4 Рождение черной дыры.)

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.